

Conclusions

Lesson 11 – How Science Works

Graph Re-Cap

Calculate the gradient of the graph

Change in Y / Change in X

Scientific Report

There are a few different ways people write reports

However most follow the same basic structure:

- **1.** *Title* Describes what is being investigated
- 2. Aim 2 Sometimes included to expand on the title
- **3.** Prediction/Hypothesis I Important to state what you think will happen
- 4. Method/equipment P How the experiment will be carried out
- **5.** *Results* P This is your data from your *dependent* variable
- 6. Conclusion 2 The focus for today: Looking at your results closely
- 7. Evaluation 2 More on this next lesson (assessing your experiment)

Example

Photosynthesis example: As light intensity increases from 0 to 200 units, the rate of photosynthesis increases. However, increasing the light intensity past 250 does not increase the rate of

photosynthesis.

How is a conclusion different to this?

- Describing the trend of a graph is basically the conclusion!
- You should look at the results and say what happened
- In some cases, you may be able to say 'why' this was
- But in most instances it is acceptable to simply describe

Conclusion Definition:

A conclusion identifies what has been learned from the investigation and may agree or disagree with the prediction made during planning.

NEVER use the word **IT** in a conclusion.

As the area increases, *it* increases.

What increases?

If there is any doubt you won't get credit for your answer.

Let's have a go ourselves!

How does mass of lithium affect the volume of gas produced?

Mass of lithium carbonate in g	Volume of gas in cm ³
0.0	0
0.1	22
0.2	44
0.3	50
0.4	88
0.5	96
0.6	96
0.7	96

As the mass increases, the volume of gas increases.

However, increasing the mass above 0.5 doesn't effect the volume of gas as it plateaus (levels off).

Mass of lithium carbonate in g	Volume of gas in cm ³		
0.0	0		
0.1	22		
0.2	44		
0.3	50		
0.4	88		
0.5	96		
0.6	96		
0.7	96		

Let's have a go ourselves part 2!

We are going to look at an experiment where the wind speed varied

And a graph was plotted showing the amount of electricity generated as the wind speed changed

How does the distance of a lamp from a solar cell affect the current and potential difference?

As the distance from the solar cell increases from ... to ... the potential difference...

Distance from solar cell (cm)	Potential Difference (V)			
	1	2	3	Mean
5	10.10	9.90	10.20	
10	2.60	2.40	2.70	
15	1.05	1.12	1.08	
20	0.67	0.72	0.63	
25	0.42	0.39	0.41	

How does the distance of a lamp from a solar cell affect the current and potential difference?

As the distance from the solar cell increases from ... to ... the potential difference...

Distance from solar cell (cm)	Potential Difference (V)			
	1	2	3	Mean (to 1 d.p)
5	10.10	9.90	10.20	10.1
10	2.60	2.40	2.70	2.6
15	1.05	1.12	1.08	1.1
20	0.67	0.72	0.63	0.7
25	0.42	0.39	0.41	0.4

Longer answer Conclusions

- As you work towards GCSE's, a one line conclusion isn't quite long enough
- So you need to give more detail
- To help with this you can use the PEEL structure
- P = Point
- E = Evidence
- E = Explain
- L = Link (e.g. to prediction)

Example PEEL Conclusion:

Point → The graph shows that there were more hot dogs sold towards the end of the week than at the beginning

Evidence → For example, only 10 hot dogs were sold on Monday but 70 were sold on Friday

Explain \rightarrow This is because more people found out about the new hot dog stand

Link \rightarrow And so told their friends about it who then also purchased hot dogs